1. Who am I & Why am I Here?

Who I am:
• Brad Appleton, Senior Software Engineer, Motorola AIEG
• Practicing software developer since 1987
• Work primarily on software development tools
• Special emphasis on:
 - Software Configuration Management (SCM)
 - Object-Orientation (O-O)

Why I’m here:
• Surviving practitioner of several improvement efforts
• Noticed some successfully recurring “best practices”
• Researched them, and wrote them up
2. Abstract

- Process Improvement and Product Development have many things in common
- Recognizing these similarities is important
- So is recognizing the differences
- Process change entails cultural change
- Numerous social & technical barriers to overcome

There are some recurringly successful strategies used to address many of the above!

3. Introduction & Acronyms

SPI: Software Process Improvement
PIT: Process Improvement Team (a.k.a. PWG, SEPG)
PEG: Process Engineering Group (a.k.a. SEPG)
IAT: Improvement Action Team

My experience in roughly a half-dozen SPI efforts:
- Served as both a change-agent and a change-target
- Both Software CMM and ISO-9000 focused SPI efforts
- Some successful strategies were common to most of them
- Published SPI experience reports described many of the same strategies
- Documented these recurring “best practices” as “patterns”
4. What are Patterns?

Trendy: Recent “hot topic”, OOD buzzword, lots of hype!

Literary: Form of software engineering problem-solving documentation

Pragmatic: Describe practical solutions to “real world” problems

Recurring: Identify good design structures which recur in practice

Generative: Show how and when to apply the solution, and generate the desired design structure

Emergent: Larger solutions emerge indirectly from applying patterns in succession, and in concert together

5. Pattern Origins and History

- Writings of architect Christopher Alexander (coined this particular use of the term “pattern” ca. 1977-1979)
- Documentation of best practices and handbooks for engineering and architecture
- Literate programming (Don Knuth), ca. 1984
- Kent Beck and Ward Cunningham, Tektronix, OOPSLA’87 (used Alexander’s “pattern” ideas for Smalltalk GUI design)
- PLoP Conferences and books, 1994-present
6. Pattern Definitions

A “pattern” is ...

• An abstraction from a concrete form which keeps recurring in specific, non-arbitrary contexts
 \[\text{[generic definition]}\]

• A recurring solution to a common problem in a given context and system of forces
 \[\text{[Alexander]}\]

• A named “nugget” of instructive insight, conveying the essence of a proven solution to a recurring problem in a given context amidst competing concerns

• A successfully recurring “best practice” that has proven itself in the “trenches”

• A literary format for capturing the wisdom and experience of expert designers, and communicating it to novices

7. Kinds of Software Patterns

• Design Patterns (software design; often object-oriented):
 - architecture (systems design)
 - design (component interactions)
 - programming idioms (language-specific techniques/style)

• Analysis Patterns (recurring & reusable analysis models)

• Organization Patterns (structure of organizations/projects)

• Process Patterns (software process design)

• Domain-Specific: \textit{Any other domain you can think of!}
8. The Problem of Process Improvement

- Process improvement affects *more* than just the process
- Process improvement efforts disrupt delicate ecosystems deeply rooted within the community
- Process change means culture change
- Culture change entails changing the perceptions, values, and normative behaviors of a community
- Requires buy-in/participation from everyone affected:
 - Senior Management
 - Middle Management
 - Program/Project/Product “Line” Management
 - Practitioners & SQA

9. Opposing Forces of SPI

- Resistance to change; perceived threat of losing:
 - power
 - control
 - familiarity
 - social/professional status
- Speed at which groups/individuals can assimilate change
- Organizational climate’s tolerance/readiness for change
- Process change imposes a learning curve
 (things appear to get worse before they get better)
- Improvement efforts consume time and resources
 (which many would prefer to spend on current development projects)
10. Patterns for Conducting SPI

Organization Patterns
- Local Heroes
- PIT also Practices
- Dedicated Improvement Processors
- Center PEG
- Improvement Action Teams

Process & Communication Patterns
- Process is Product
- Virtual Forum
- Process follows Practice
- Improvement follows Process
- Improvement follows Spiral

• These patterns are not a complete set of solutions for conducting SPI
• Their repeated success has been documented throughout the published SPI literature
• Many issues left unresolved/unaddressed are discussed within their resulting contexts

11. Applicability of these SPI Patterns

These patterns seem to be applicable when:

• Senior management commitment has been obtained
 - This is a hard problem all by itself, but is not addressed by these patterns
• Process goals/assessment criteria have been determined
 - Typically one of: ISO 9000, the SEI Software CMM, or SPICE

The circumstances of my own personal SPI experiences:

• Size of the groups ranged from 7-70 people
• Encompassed 1-10 project teams within the group
• Project team sizes were between 2 and 12 people
• Typically considered small-medium sized SPI efforts
• Published SPI case studies suggest these patterns scale to larger groups (perhaps with variations)
12. Pattern Elements

Name
- a meaningful “conceptual handle” for discussion

Context
- tells *how the problem occurs / when the solution works*

Problem
- statement of the problem / *intent* of the solution

Forces
- trade-offs, goals + constraints, motivating factors/concerns
- tells *why the problem is difficult*

Solution
- tells *how to generate* the solution
- the solution structure, its participants & collaborations

13. Pattern Elements (cont.)

Examples *(optional)*

Resulting Context
- describes the end result, benefits and consequences
- shows how the forces were balanced/traded-off
- tells *how the solution works out*

Rationale *(optional)*
- underlying principles/heuristics justifying the solution
- tells underpinnings of *why the solution works out*

Related Patterns
- patterns which are similar, or may precede/follow this one

Known Uses
- 3 or more independent instances of “real world” success
14. Process is Product

Context:
- Senior management has committed to support SPI efforts
- You are responsible for mobilizing people and resources to make it happen
- SPI is a new endeavor for your group
- You’re unsure how to get started and get organized

Problem:
How should a process improvement initiative be organized and managed?

Forces:
- Want to use a familiar/established project management infrastructure
- You are trying to change the process, not develop a software product
- What works for a development project may not work for SPI
- Unless treated like other projects, SPI may not get needed consideration (and respect) from practitioners and from upper management

Solution:
- Treat it like a development project!
- Recruit a corresponding project team (PIT) and project leader
- Establish a repository for process documentation and other process artifacts
- Use appropriate planning, tracking, configuration management, etc.
- Ensure visibility of the SPI project to upper management and the rest of the organization is comparable to that of other important projects

Resulting Context:
- Familiarity: the project management infrastructure is well established
- Uniformity: common project management framework for process & products
- Visibility: assists in obtaining management resources and support
- Credibility: Helps legitimize SPI efforts so they are taken seriously

Known Uses:
- Kodak [Wiegers]; Hewlett-Packard [Grady]; NORAD [Wakulczyk]; Lloyds Bank [Lamer]; Several SPI case studies [Radice], [Austin,Paulish] & [Curtis]
16. Virtual Forum

Context:
- Setting up the SPI project infrastructure
- The PIT needs to regularly communicate with process stakeholders to announce project status, and to solicit feedback and participation

Problem:
How do you periodically discuss improvement efforts without numerous group-wide meetings that interrupt/compete with product development?

Forces:
- Want to keep all stakeholders informed of SPI efforts/status/progress
- Want practitioner input/feedback on SPI (since they have to live with it)
- Coordinating schedules to accommodate everyone can be a nightmare
- Widespread sentiment that meetings detract from accomplishing “real work”

17. Virtual Forum (cont.)

Solution:
- Create a group-wide discussion forum using a two-way communications medium already in wide use (local newsgroups, intranet, notes, etc.)
- Make sure messages on the forum are automatically archived/backed-up
- Announce its availability and encourage its use for SPI input+feedback
- Establish guidelines/policy for proper use (netiquette)

Resulting Context:
- Can communicate many SPI issues without having to coordinate schedules
- Face-to-face meetings still needed, but with reduced frequency
- Enables high-frequency 2-way communication between PIT and its customers
- Human contact is not replaced, but augmented by technology
- Forum archive serves as SPI project “memory”, preserving important historical comments that may be easily recalled

Known Uses:
- SPI experience reports and case studies [Austin, Paulish], [Baumert], and [McLane]
18. Local Heroes

Context:
- Need to assemble the process improvement team (PIT)
- Need to consider people both external and internal with varying experience

Problem:
How do you staff the PIT with members who can effectively lead the practitioner community in accepting and adopting process changes?

Forces:
- Process experts often perceived as steeped in theory rather than practice
- Want people with process knowledge and expertise
- Want people with solid, real-world experience in the trenches
- Internal people know the current climate, but may be less versed in SPI
- Outsiders might be experts, but aren’t part of the community
- Trust/respect of key practitioners is needed to gain inroads into the community

19. Local Heroes (cont.)

Solution:
- Use “all-stars in the family”: respected members of the organization with proven track records as developers or managers
- Try for equitable representation from the various projects
- But do not sacrifice experience and respect in order to achieve the above
- If you have to compromise, go with the more influential individuals

Resulting Context:
- The PIT is both socially and technically aligned with the practitioner community
- PIT members have intimate knowledge of development issues and people (and their deeds and words are respected within the development culture)

Known Uses:
- NORAD [Wakulczyk], SPI experience reports and case studies [Curtis], [Fowler,Rifkin] and [Donaldsen,Siegel]
20. Local Heroes (cont.)

![Diagram of Local Heroes]

21. Center PEG

Context:
- SPI for a large group
- One PIT will either be too big/unwieldy, or won’t be enough
- Need multiple PITs

Problem:
How do you organize and manage multiple PITs for a large-ish group?

Forces:
- A single guiding coalition is good for conceptual integrity and consistency
- One PIT with equitable representation will be too big and unmanageable
- Several smaller PITs require significant extra effort for coordination and communication
- Issues of authority and control may arise between the various PITs
22. Center PEG (cont.)

Solution:
- Create a Process Engineering Group (PEG) to be a center of guidance and support for the other PITs (similar to a SEPG in the Software CMM)
- PEG members will typically work full-time on process engineering and improvement (see Dedicated Improvement Processors)
- PEG is the primary authority for conducting/organizing SPI in the organization
- Variant #1 - PIT per Subgroup: local PITs address the entire software process for their own subgroup or department
- Variant #2 - PIT per Core Competency: each local PIT focuses on a single KPA, using domain experts from across the organization

Resulting Context:
- PEG becomes a central hub of SPI coordination, communication & guidance
- The PEG and PITs are typically used throughout the life-span of SPI

Known Uses:
- Raytheon [Haley]
- GTE [Dorsey, McDonald]
- DuPont [Austin, Paulish]
- Donaldsen, Siegel

23. Center PEG (cont.)
24. PIT also Practices

Context:
- Need to estimate and request SPI resources (including people and effort)
- The time/effort requested of each person may determine whether or not they can participate in the PIT

Problem:
How much time should PIT members devote to SPI to make reasonable progress without becoming detached from the practitioner community?

Forces:
- Part-time may not be enough to contribute the necessary time/resources
- Nice to have people who can dedicate the majority of their time to SPI efforts
- Some Local Heroes are too important to current projects to be pulled off
- Small groups may not be able to spare any single person for full-time SPI
- Current practitioners are desirable because they’re intimately aware of existing corporate culture and the practitioner community

Solution:
- Have PIT members spend 10%-20% of their time on SPI while still working on their current development projects.
- Make sure their workloads are adjusted to permit time for SPI activities (This requires management cooperation and support)
- Try to have at one or two PIT members devote 50%-100% of their time to handle managerial and administrative overhead for coordinating SPI efforts
- Is it realistic to expect to accomplish SPI with a part-time team?
 - 4-5 hours per week per person isn’t very much, especially if PIT meetings are held on a periodic basis (e.g., weekly or bi-weekly)
 - 8-10 hours per week per person is more realistic, provided that workloads can be adjusted accordingly

Resulting Context:
- The PIT remains socially connected with the practitioner culture/community
- PIT members may not work full-time on SPI, but maintaining this connection greatly facilitates process changes being adopted and accepted

25. PIT also Practices (cont.)

Solution:
- Have PIT members spend 10%-20% of their time on SPI while still working on their current development projects.
- Make sure their workloads are adjusted to permit time for SPI activities (This requires management cooperation and support)
- Try to have at one or two PIT members devote 50%-100% of their time to handle managerial and administrative overhead for coordinating SPI efforts
- Is it realistic to expect to accomplish SPI with a part-time team?
 - 4-5 hours per week per person isn’t very much, especially if PIT meetings are held on a periodic basis (e.g., weekly or bi-weekly)
 - 8-10 hours per week per person is more realistic, provided that workloads can be adjusted accordingly

Resulting Context:
- The PIT remains socially connected with the practitioner culture/community
- PIT members may not work full-time on SPI, but maintaining this connection greatly facilitates process changes being adopted and accepted
26. PIT also Practices (cont.)

- **Risk:** part-time SPI efforts may disappear whenever a crisis arises!
 - This would jeopardize the continuity and conceptual integrity of SPI efforts
 - Partially addressed by devoting 1-2 people half-time or full-time to SPI

Rationale:

- Some warn against committing people only part-time to SPI efforts
 - “No pain! No gain!”: taking a “hit” early on will pay off in the long run
 - But many groups (especially small ones) simply can’t afford the initial investment (if the “early hit” kills you, you won’t be around for “the long run”)
- Nothing wrong with taking “baby steps” if that’s all you can presently spare
- Things may take longer to accomplish, and one still needs to worry about improvement efforts dwindling in a crunch
- But, better to proceed slowly and reach the goal than overcommit and fail
- Previous failure will make it doubly difficult to try again

Known Uses:

- NORAD [Wakulczyk]; Kodak [Wiegers]; GTE [Dorsey, McDonald]; DEC [McLane]

27. Dedicated Improvement Processors

Context/Problem/Forces: (see PIT also Practices)

Solution:

- Have PIT members dedicate their efforts full-time to SPI
- PIT members regularly spend time assisting projects in performing the process
- Thus, in addition to conducting SPI efforts, PIT members serve as hands-on mentors to assist performing and tailoring the process for the other projects

Resulting Context:

- PIT has ample time and resources; SPI need not progress at a snail’s pace
- Conceptual integrity and continuity of SPI is less at risk with full-time personnel
- Opt for the opposite extreme from PIT also Practices: members are more isolated from the development teams, but devote more time to effect SPI
- Tries to manage this risk (greater isolation) by having PIT members regularly interact with the development project teams.

Known Uses:

- Bull HN [Herbsleb, Carleton]; SPI case studies [Fowler, Riftin] and [Donaldsen, Siegel]
28. Process follows Practice

Context:
- SPI project infrastructure has been set-up and a PIT has been assembled
- Need to commence trying to change/adapt the process to meet SPI goals

Problem:
How do you change the process to meet SPI goals while ensuring the process documentation accurately reflects what really happens in the trenches?

Forces:
- The desire to begin making process changes right away can be very strong
- So can the need to demonstrate visible progress ASAP (to gain confidence and credibility in SPI efforts from managers and practitioners)
- This flies directly in the face of: resistance to change, speed and size of change (evolution versus revolution), and tolerance for change
- Want to change process documentation to address the assessment criteria
- Also want documented process to be genuinely used and followed (as opposed to shelfware that simply stays on the shelf)

Solution:
Start by discovering and understanding current practice throughout the group. Then iteratively and incrementally improve the process and ensure that documentation is updated appropriately

1. *Cherchez les Documentation!* (Archaeology)
 - Find any existing process documentation (excavate process artifacts)
2. *Know Thyself!* (Anthropology)
 - Talk to practitioners to discover current practices, and understand how work tasks are performed
 - Reconcile differences between actual and espoused processes
3. *Process follows Practice!* (Characterize)
 - Document these current practices, bringing together all artifacts
 - Then review and baseline the result!
4. *Piecemeal Growth!* (Incremental/Iterative Improvement)
 - Assess current versus desired state and identify possible improvements
 - Implement and evaluate improvements, deploy what works

29. Process follows Practice (cont.)

Solution:
Start by discovering and understanding current practice throughout the group. Then iteratively and incrementally improve the process and ensure that documentation is updated appropriately

1. *Cherchez les Documentation!* (Archaeology)
 - Find any existing process documentation (excavate process artifacts)
2. *Know Thyself!* (Anthropology)
 - Talk to practitioners to discover current practices, and understand how work tasks are performed
 - Reconcile differences between actual and espoused processes
3. *Process follows Practice!* (Characterize)
 - Document these current practices, bringing together all artifacts
 - Then review and baseline the result!
4. *Piecemeal Growth!* (Incremental/Iterative Improvement)
 - Assess current versus desired state and identify possible improvements
 - Implement and evaluate improvements, deploy what works
30. Process follows Practice (cont.)

Resulting Context:
- The first three activities form a lifecycle model for process definition
- The last activity outlines a basic lifecycle structure for process evolution
- Evolutionary/incremental approach balances resistance/tolerance/speed:
 - Improvement progress is slow during archaeology and anthropology phases
 - Necessary to analyze/understand stakeholders and assess change impact
 - “If you don’t know where you are, a map won’t help!” -- Watts Humphrey

Rationale:
- Builds on Process is Product by saying SPI is legacy systems reengineering
- Proposing complete overhaul sends a message: you’re doing everything wrong
- Many things may need improvement, but many things are being done right
- Process follows Practice makes clear what does and does not need to change!
- Increases familiarity & self-esteem; decreases the size and speed of change

Known Uses:
- From SPI experience reports [Krasner], [Austin,Paulish], [Fowler,Ritkin], and [WeinbergV4]

31. Process follows Practice (cont.)
32. Improvement Action Teams

Context:
- A specific process area has been selected for improvement
- Some preliminary planning and discussion have already been conducted

Problem:
To facilitate its acceptance while making effective use of time and effort, who should implement and deploy a given improvement idea?

Forces:
- PIT (or PEG) is primarily responsible for leading process improvement efforts
- Process changes are most likely to be accepted when developed in participation with their practitioners
- PIT has been granted time and resources for SPI
- This may not be true of remaining practitioners outside the PIT

Solution:
- Form an Improvement Action Team (IAT) from the pool of PIT members and practitioners who championed or supported the improvement idea
- The IAT should be small, and tightly focused on the single improvement
- Non-PIT members should devote 10%-20% of their time to the improvement
- Disband the IAT after the improvement has been successfully deployed

Resulting Context:
- Temporally recurring process “SWAT teams” which enlist practitioners in SPI
- The IAT focuses exclusively on the one improvement, leaving the rest of the PIT free to do other things while still “keeping tabs” on the IAT
- IAT members and their projects make good improvement pilot-test candidates
- Requires appropriate rewards/reinforcement to encourage participation and cooperation (and, of course, management support)

Known Uses:
- Raytheon [Haley], Tinker Air Force Base [Herbsleb,Carleton], SPI case studies [Fowler,Rifkin]
34. Improvement Action Teams (cont.)

![Diagram of PIT and Proj relationships]

35. Improvement follows Process

Context:
- Process follows Practice has been applied
- PIT or IAT is ready to start designing/implementing/deploying process changes

Problem:
What process should be used for improving the process itself?

Forces:
- Ideally, the process should be capable of encompassing self-improvement
- If it were this far along, many such improvements wouldn’t be necessary
- Using policies and procedures different from those you have recommended damages your credibility within the development community
- It also indicates the process’ inability to handle the existing range of projects
- But many SPI activities/concerns are very different from product development
36. Improvement follows Process (cont.)

Solution:

• When plausible, use the same process you’re imposing/have already imposed
• New improvement proposals should take into account how they might be practiced for process development as well as product development
• Some things may make sense for products, but not the process (they may be different, or missing/extra between the two):
 - Look for common elements & abstract them into general policies/guidelines
 - Individual projects (including SPI) tailor these to their needs (within policy)

Resulting Context:

• Congruence between the words of the PITs and IATs with their own actions, and with the desired actions of the rest of the development community
• “Practicing what you preach” lends credibility to your efforts
• The process becomes adaptable enough for product and process development

Known Uses:

• Microsoft [McCarthy], [Cusumano, Selby]; SPI case studies [Curtis], [Fowler, Rifkin], [Donaldsen, Siegel]

37. Improvement follows Spiral

Context:

• Need an overall battle-plan to structure activities for incremental improvements
• This may apply to general SPI efforts by the PIT or specific efforts by an IAT

Problem:

What framework should be used to structure the varied activities of planning, implementation, assessment, and deployment for SPI?

Forces:

• Group-wide SPI efforts must be carefully planned if they are to succeed
• Many risks must be identified, evaluated, and appropriately addressed
• Omitting an important step or overlooking a key risk can result in project failure
• Too much planning & analysis can slow/impede progress (analysis paralysis)
• Too much action and not enough assessment may result in sloppy and ineffective efforts that eventually fail
• Even if a suitable balance of action and reflection is found, their order and frequency can make or break an SPI initiative
38. Improvement follows Spiral (cont.)

Solution:
- Impose a spiral model upon the process improvement lifecycle
- Use a variant of the Shewhart cycle of Plan-Do-Check-Act (espoused by Deming and in TQM circles)

Resulting Context:
- A spiral framework for iteratively incorporating planning, assessment, and risk management activities into SPI
- The spiral model is used in a manner similar to that recommend for software
- The Shewhart cycle tailors the spiral model for use with SPI efforts (Grady)

Known Uses:
- Hewlett-Packard, Plan-Do-Check-Act [Grady]
- Kodak, Plan-Do-Assess-Verify [Wiegier]
- NORAD, Analyze-Plan-Do-Check-Act [Wakulczyk]
- SPI experience reports [Kellner], [SPC], and reports of “real world” extension to SEI’s IDEAL model: Initiate-Diagnose-Enact-Assess-Leverage, [Jones,Kasunic] and [Radice]

39. Improvement follows Spiral (cont.)

DO
CHECK
improvement
PLAN
ACT
40. SPI Conclusions

- Process change entails cultural change!
- Process Improvement and Product Development are very similar yet very different, both of which are vitally important!

The *process patterns* shown here extol the similarities:
- A process *is* a product!
- The existing process is a legacy system
- SPI is a legacy systems-reengineering project
- Plan & Manage SPI projects much like development projects
- SPI procedures should closely resemble product development procedures
- Evolutionary/Incremental development seems to meet with greater success
- *Engaging customers early and often* in dialogues which regularly communicate status and feedback is a crucial element of success (and its absence is often a leading cause of project failures)

41. SPI Conclusions (cont.)

The *organization and communication patterns* shown here focus on the important social and cultural differences:

- Social organization and communication strategies for SPI must accommodate the fact that *the customer actually lives under the same roof* as the enterprise itself, co-habitating with all of its members
- Customer *communication & interaction issues are profoundly amplified* in SPI projects because the customers are members of the same cultural community as SPI project managers and architect
- As a result, *the organization’s internal ecosystem is more sensitive* to the impact of improvement efforts since they effect changes in that very same culture
42. Open Issues

Still need answers to other important SPI questions:
• How do you successfully obtain senior management “buy in”?
• How do you convince others of both the real and perceived need for SPI?
• How do you create a shared mental model of the desired end-result?
• How should you setup rewards, incentives, and reinforcement?
• How should you solicit practitioner enrollment?
• How should you establish process ownership?
• How should you conduct training and education?
• How should you assess/evaluate SPI progress?
• What needs to be done differently for calendar-driven, architecture-driven, or documentation-driven organizations?
• What about groups in constant crisis or crisis-aversion mode?

We need patterns for all these and more before we have a comprehensive solution for initiating and sustaining SPI!

43. Why Patterns?

Software Patterns help us because they:
• Solve “real world” problems
• Capture domain expertise
• Document design decisions and rationale
• Reuse wisdom and experience of master practitioners
• Convey expert insight to novices
• Form a shared vocabulary for problem-solving discussion
• Show more than just the solution:
 - context (when and where)
 - forces (trade-off alternatives, misfits, goals+constraints)
 - resolution (how and why the solution balances the forces)
44. Summary - What Patterns Are Not

Software Patterns are *not* ...

- Restricted to software design or object-oriented design
- Untested ideas/theories or new inventions
- Solutions that have worked only once
- Any old thing written-up in pattern format
- *Abstract* principles or heuristics
- Universally applicable for all contexts
- A “silver bullet” or panacea

45. Summary - What Patterns Are

Software Patterns *are* ...

- *Recurring* solutions to common problems of design
- *Practical/concrete* solutions to real world problems
- *Context* specific
- “*Best-fits*” for the given set of concerns/trade-offs
- “*Old hat*” to seasoned professionals and domain experts
- A *literary form* for documenting best practices
- A *shared vocabulary* for problem-solving discussions
- An effective means of (re)using, sharing, and building upon existing wisdom/experience/expertise
- *Massively overhyped!*
46. SPI Books & Publications

- Creating a Software Engineering Culture
 Karl E. Wiegers, Dorset House, 1996
 (see also http://www.frontiernet.net/~kwiegers/)

- Successful Software Process Improvement
 Robert B. Grady, Prentice-Hall, 1997

- Cultivating Successful Software Development: A Practitioner's View
 Scott E. Donaldsen, Stanley G. Siegel, Prentice-Hall PTR, 1997

- Software Engineering Process Group Guide
 Priscilla Fowler, Stan Rfikin, Carnegie Mellon University
 available online from http://www.sei.cmu.edu/products/publications/doc.list/index.html
 (see also http://www.sei.cmu.edu/technology/cmm/cmm/articles.html)

- Improving the Software Process Through Process Definition and Modeling

- SEPG Conference Proceedings

47. Books on Organizational/Culture Change

- Managing at the Speed of Change, Daryl Conner, Villard Books, 1993
- Quality Software Management Volume 4: Anticipating Change
 Gerald Weinberg, Dorset House, 1997
- Changing the Way We Change, Jeanenne LaMarsh, Addison-Wesley, 1995
- Beyond the Wall of Resistance, Rick Maurer, Bard Press, 1996
- Battling the Barriers to Success, Joan Klubnik and Marlene Roschelle, Irwin, 1996
- Agents of Change, Barbara M. Bouldin, Yourdon Press, 1989
- Corporate Lifecycles, Ichak Adizes, Prentice-Hall, 1988
- Reengineering the Corporation, Michael Hammer and James Champy, Harper, 1993
- Beyond Reengineering, Michael Hammer, Harper, 1996
- The Fifth Discipline, Peter M. Senge, Currency-Doubleday, 1990
- The Fifth Discipline Fieldbook, Senge et. al., Currency-Doubleday, 1994

See Amazon books for more than a hundred other references on the subject at:
http://www.amazon.com/exec/obidos/Subject=Organizational%20change/4907-6944902-566134
48. Pattern Resources - Books

- **A Pattern Language: Towns, Buildings, Construction** *(APL)*
 Christopher Alexander; Oxford University Press, 1977

- **The Timeless Way of Building** *(TTWoB)*
 Christopher Alexander; Oxford University Press, 1979

- **Design Patterns: Elements of Reusable Object-Oriented Software** *(GoF)*
 Gamma, Helm, Johnson, Vlissides; Addison-Wesley, 1994

- **Pattern-Oriented Software Architecture: A System of Patterns** *(POSA)*
 Buschmann, Meunier, Rohnert, Sommerlad, Stal; Wiley and Sons, 1996

- **Pattern Languages of Program Design** *(PLoPD1)*
 Coplien and Schmidt (editors); Addison-Wesley, 1995

- **Patterns of Software: Tales from the Software Community**
 Richard Gabriel; Oxford University Press, 1996

- **Analysis Patterns: Reusable Object Models**
 Martin Fowler; Addison-Wesley, 1996

- **Pattern Languages of Program Design 2** *(PLoPD2)*
 Vlissides, Coplien, and Kerth (editors); Addison-Wesley, 1996

49. Pattern Resources - Online

- Patterns Home Page, http://www.hillside.net/patterns/
- Patterns Discussion FAQ, http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html
- Patterns Mailing Lists, http://www.hillside.net/patterns/Lists.html
- Brad’s Patterns Intro: http://www.enteract.com/~bradapp/docs/patterns-intro.html
- Luke Hohmann’s Patterns Intro: http://members.aol.com/lhohmann/papers.htm
- Doug Lea’s OOD Patterns Intro: http://gee.cs.oswego.edu/dl/ca/ca/ca.html
50. The Chicago Patterns Group (TCPG)

- Meets the 1st and 3rd Tuesday of every month
- Informal gathering from 7pm-9pm at Borders Books
 - at the northeast corner of Golf (IL-58) and Meacham roads
 - 1540 Golf Road, Schaumburg, IL 60173, (847)330-0031
- Read & Discuss all kinds of Software Patterns
 - Patterns of Software Design, Analysis, Process, Organization, etc.
- Have been meeting (semi-monthly) since January 1997
- Newcomers are always welcome!
 - Email <bradapp@enteract.com> to be added to the email notification list for TCPG meetings and special events
- See the TCPG home page for info and status

51. Presenter Information

Professional

Brad Appleton, Senior Software Engineer
Motorola Automotive and Industrial Electronics Group
4000 Commercial Avenue, Northbrook, IL 60062
e-mail: Brad_Appleton-GBDA001@email.mot.com

Personal

Brad Appleton, Software Tools Developer
e-mail: bradapp@enteract.com
web: http://www.enteract.com/~bradapp/
(3500+ www links to software engineering & computer science at the above URL)

Papers available at the “Documents” section of my webpage:

- Patterns for Conducting Process Improvement
- Patterns in a Nutshell: The “bare essentials” of Software Patterns
- Patterns and Software: Essential Concepts and Terminology